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Abstract: 

Microarrays enable biologists to study genome-wide patterns of gene expression in any given cell type at 

any given time and under any given set of conditions. Identifying group of genes that manifest similar expression 

pattern is important in the analysis of gene expression in time series data. In the existing work, investigate the choice 

of proximity measures for the clustering of microarray data by evaluating the performance of 16 proximity measures 

from time course and cancer datasets experiments. 

 

1. Introduction 

Biomedical engineering (BME) is the application of engineering principles and design concepts to 

medicine and biology for healthcare purposes (e.g. diagnostic or therapeutic). This field seeks to close the gap 

between engineering and medicine. It combines the design and problem solving skills of engineering with medical 

and biological sciences to advance healthcare treatment, including diagnosis, monitoring, and therapy. 

Biomedical engineering has only recently emerged as its own study, compared to many other engineering 

fields. Such an evolution is common as a new field transitions from being an interdisciplinary specialization among 

already-established fields, to being considered a field in itself. Much of the work in biomedical engineering consists 

of research and development, spanning a broad array of subfields (see below). Prominent biomedical engineering 

applications include the development of biocompatible prostheses, various diagnostic and therapeutic medical 

devices ranging from clinical equipment to micro-implants, common imaging equipment such as MRIs and EEGs, 

regenerative tissue growth, pharmaceutical drugs and therapeutic biological. 
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Notable sub-disciplines of biomedical engineering can be viewed in two angles, from the medical 

applications side and from the engineering side. A biomedical engineer must have some view of both sides. As with 

many medical specialties (e.g. cardiology, neurology), some BME sub-disciplines are identified by their associations 

with particular systems of the human body, such as: 

 Cardiovascular technology - which includes all drugs, biologics, and devices related with diagnostics and 

therapeutics of cardiovascular systems 

 Neural technology - which includes all drugs, biologics, and devices related with diagnostics and 

therapeutics of the brain and nervous systems 

 Orthopedic technology - which includes all drugs, biologics, and devices related with diagnostics and 

therapeutics of skeletal systems 

 These examples focus on particular aspects of anatomy or physiology. A variant on this approach is to 

identify types of technologies based on a kind of pathophysiology sought to remedy apart from any 

particular system of the body, for example: 

 Cancer technology - which includes all drugs, biologics, and devices related with diagnostics and 

therapeutics of cancer 

But more often, sub-disciplines within BME are classified by their association(s) with other more established 

engineering fields, which can include (at a broad level): 

 Biochemical-BME, based on Chemical engineering - often associated with biochemical, cellular, molecular 

and tissue engineering, biomaterials, and bio transport. 

 Bioelectrical-BME, based on Electrical engineering and Computer Science - often associated with 

bioelectrical and neural engineering, bioinstrumentation, biomedical imaging, and medical devices. This 

also tends to encompass optics and optical engineering - biomedical optics, bioinformatics, imaging and 

related medical devices. 

 Biomechanical-BME, based on Mechanical engineering - often associated with biomechanics, bio-

transport, medical devices, and modeling of biological systems, like soft tissue mechanics. 

One more way to sub-classify the discipline is on the basis of the products created. The therapeutic and 

diagnostic products used in healthcare generally fall under the following categories: 

 Biologics and Biopharmaceuticals often designed using the principles of synthetic biology (synthetic 

biology is an extension of genetic engineering). The design of biologic and biopharma products comes 

broadly under the BME-related (and overlapping) disciplines of biotechnology and bioengineering. Note 

that "biotechnology" can be a somewhat ambiguous term, sometimes loosely used interchangeably with 

BME in general; however, it more typically denotes specific products which use "biological systems, living 

organisms, or derivatives thereof." [2] Even some complex "medical devices" (see below) can reasonably 

be deemed "biotechnology" depending on the degree to which such elements are central to their principle of 

operation. 

 Pharmaceutical Drugs (so-called "small-molecule" or non-biologic), which are commonly designed using 

the principles of synthetic chemistry and traditionally discovered using high-throughput screening methods 

at the beginning of the development process. Pharmaceuticals are related to biotechnology in two indirect 

ways: 1) certain major types (e.g. biologics) fall under both categories, and 2) together they essentially 

comprise the "non-medical-device" set of BME applications. (The "Device - Bio/Chemical" spectrum is an 

imperfect dichotomy, but one regulators often use, at least as a starting point.) 

 Devices, which commonly employ mechanical and/or electrical aspects in conjunction with chemical 

and/or biological processing or analysis. They can range from microscopic or bench-top, and be either in 

vitro or in vivo. In the US, the FDA deems any medical product that is not a drug or a biologic to be a 
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"device" by default (see "Regulation" section). Software with a medical purpose is also regarded as a 

device, whether stand-alone or as part of another device. 

 Combination Products (not to be confused with fixed-dose combination drug products or FDCs), which 

involve more than one of the above categories in an integrated product (for example, a microchip implant 

for targeted drug delivery).  

 Bioinformatics, is a field committed to the interpretation and analysis of biological data using 

computational techniques, has evolved tremendously in recent years due to the explosive growth of 

biological information generated by the scientific community.  

 Bioinformatics is the science of managing, mining, integrating, and interpreting information from 

biological data at the genomic, proteomic, phylogenetic, cellular, or whole organism levels. 

  The need for bioinformatics tools and expertise has increased as genome sequencing projects have resulted 

in an exponential growth in complete and partial sequence databases.  

Data mining is the use of automated data analysis techniques to uncover previously undetected relationships among 

data items. Data mining often involves the analysis of data stored in a data warehouse. 

 

2. Literature Review 
 

Comparisons and validation of statistical clustering techniques for microarray gene expression data, 2003 by 

susmita data and somnath data. 

  This paper offers some guidelines in the choice of a clustering technique to be used in connection with a 

particular microarray data set. In this work, selected six clustering algorithms of various types and evaluated their 

performance on a well known publicly available microarray data set on sporulation of budding yeast, as well as on 

two simulated data sets which are introduced in the next section. Of course, one can extend and modify this list of 

competing clustering algorithms to include his/her favorite algorithm. At least five of these algorithms are chosen to 

represent different classes of methods. Thus, well known algorithms such as Pam and Clara, both of which fall under 

partition methods, are not included in favor of including the K-means algorithm. 

A comparative study of different machine learning methods on microarray gene expression data, 2007 by 

mehdi pirooznia, jack y yang, mary qu yang and youping deng. 

  Several classification and feature selection methods have been studied for the identification of 

differentially expressed genes in microarray data. Classification methods such as SVM, RBF Neural Nets, MLP 

Neural Nets, Bayesian, Decision Tree and Random Forrest methods have been used in recent studies. The accuracy 

of these methods has been calculated with validation methods such as v-fold validation. However there is lack of 

comparison between these methods to find a better framework for classification, clustering and analysis of 

microarray gene expression results. In this work, comparing these Classification methods of microarray gene 

expression is presented. 

Clustering cancer gene expression data: a comparative study, 2008 by marcilio cp de souto, ivan g costa, 

daniel sa de araujo, teresa b ludermir and alexander schliep.  

 The use of clustering methods for the discovery of cancer subtypes has drawn a great deal of attention in 

the scientific community. While bio informaticians have proposed new clustering methods that take advantage of 

characteristics of the gene expression data, the medical community has a preference for using "classic" clustering 

methods. There have been no studies thus far performing a large-scale evaluation of different clustering methods in 

this context. Here present the first large-scale analysis of seven different clustering methods and four proximity 

measures for the analysis of 35 cancer gene expression data sets. 
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Analyzing gene expression time-courses, 2005 by alexander schliep, ivan g. Costa, christine steinhoff, and 

alexander scho¨nhuth. 

  Here present a robust and efficient approach to analyze gene expression time-course data with a mixture of 

hidden Markov models. The method can easily make use of prior knowledge about genes due to a partially 

supervised training procedure, which greatly increases robustness and the quality of the local optima found. 

Availability of such labels is a realistic assumption for the analysis of gene expression time-courses. Simultaneous 

analysis of cyclic and noncyclic time-courses is possible and neither missing values nor high levels of noise pose a 

serious problem. Mixtures are, for reasons of the complexity of gene function and regulation, a more appropriate 

model of biological reality than clustering. 

3. MODULE DESCRIPTION 

List of modules 

 Correlation Coefficients Proximity measures 

 Classical Measures 

 Time-Course Specific Measures 

 Intrinsic Biological Separation Ability 

 Minimum Spanning Tree (MST) based clustering 

 Performance evaluation  

1. Correlation Coefficients Proximity measures 

Considering gene expression data, two objects (genes or samples) are usually regarded as similar if they 

exhibit similarity in shape (trend), rather than in absolute differences from their values. Therefore, correlation 

coefficients have been widely used, as they capture such a type of similarity. 

Pearson 

The Pearson correlation coefficient (PE) allows the identification of linear correlations between sequences. 

Pearson may be sensitive to the presence of outliers, thus producing false positives, i.e., sequence pairs that are not 

alike, but receive a high correlation value. 

Goodman-Kruskal 

Goodman-Kruskal (GK) takes into account only the ranks of a and b. It is defined according to the number 

of concordant (S+), discordant (S-), and neutral pairs of elements in the sequences. In a concordant pair, the same 

relative order applies to both sequences, i.e., ai < aj and bi < bj or ai > aj and bi > bj. For discordant pairs, the 

inverse relative order applies, i.e., ai < aj and bi > bj or ai > aj and bi < bj. 

Kendall 

The Kendall correlation coefficient (KE) is based on the same building blocks used by Goodman-Kruskal. 

Note that, differently from GK, extreme correlation values are obtained only in the absence of neutrals. 

Spearman 

The Spearman correlation (SP) can be seen as a particular case of Pearson, provided that values of both a 

and b are replaced with their ranks in the respective sequences. As only the ranks of the sequences are considered, 

SP is more robust to outliers than Pearson. SP has also been employed to gene expression data though less often than 

Pearson. 
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Rank Magnitude 

The Rank-Magnitude correlation coefficient (RM) was proposed as an asymmetric measure, for cases in 

which one of the sequences is composed of ranks and the other is composed by real numbers. 

Weighted Goodman-Kruskal 

The Weighted Goodman-Kruskal correlation coefficient (WGK) and takes into consideration ranks and 

magnitudes of both sequences. 

2. Classical Measures 

We review in the sequel four “classical” proximity measures that are also considered in our analysis. We 

anticipate that these measures have OðnÞ time complexity. 

Cosine Distance 

The cosine similarity and can be regarded as the normalized inner product between a and b. Note that the 

cosine similarity is related to Pearson and is sometimes referred to as uncentered correlation or angular separation. 

The cosine measures the angle between two data points with respect to the origin, whereas Pearson correlation 

measures this angle considering the mean of the data 

Minkowski Distance 

One of the most popular proximity indices that measures dissimilarity between two data points is the 

Minkowski distance metric 

3. Time-Course Specific Measures 

We review proximity measures specifically proposed for the clustering of gene time-course experiments. 

For these measures, we define t = (t1; . . . ; tn) as the time instants at which each feature is measured for a gene. 

Jackknife 

The underlying idea behind the Jackknife (JK) correlation is to minimize the effect of single outliers on the 

final correlation value by removing one single element at a time from both sequences. If the sequences do not 

contain outliers, their correlation value remains stable; otherwise, their removal causes a decrease in their 

correlation, indicating that the sequences were correlated partly due to the presence of outliers. 

Short Time-Series Dissimilarity 

The Short Time-Series Dissimilarity (STS) was proposed and measures the distance between the n - 1 

slopes that compound two gene time-series. For two genes a and b, STS is performed. The greater interval between 

the measurements, the lower its impact on the dissimilarity. 

Local Shape-Based Similarity 

Based on the observation that biological relationships between genes may be present in the form of local 

and possibly shifted similarity patterns, introduced the concept of Local Shape-based Similarity (LSS). LSS seeks 

the most similar subsequences of size k in sequences a and b.  The minimum subsequence size is given by kmin, 

which is usually set to n - 2, allowing for two time instant shifts. Note that although subsequences must have the 

same sizes, they do not have to be aligned, thus allowing locally shifted similarity patterns. 

YR1 and YS1 Dissimilarities 

Based on the presumption that correlations may not capture all information contained in gene time series, 

previous work introduced two dissimilarities that combine different types of information along with correlation 

values. 
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4. Intrinsic Biological Separation Ability 

The ISA can be computed only for data sets with a golden standard partition, i.e., data sets for which class 

labels are available. Note that for most gene clustering problems, as time-series data sets, no class labels are 

available. Therefore, we take advantage of the information provided by the GO to overcome the lack of labeled data 

and devise a new procedure to evaluate the ISA of a distance regarding the clustering of genes. This new procedure 

is called Intrinsic Biological Separation Ability (IBSA).  

Instead of using class labels, our methodology employs external biological information (semantic 

similarities among genes) extracted from the GO. Note that since IBSA employs information from the GO to 

evaluate a particular proximity measure, it tends to favor proximity measures that are in agreement with GO external 

information. If the user is interested in finding a different type of structure in the data (not related with GO), another 

methodology should be selected and employed. 

Given a data set with o objects (genes), we build a distance matrix D. Assuming that all the values of D are 

in the [0, 1] interval, all pairs of objects can be distinguished by the same binary classifier. In brief, object pairs are 

assigned to class 1 if the distance between them is smaller than or equal to a given threshold 1 in the [0, 1] interval 

and 0 otherwise. Applying this equation to all object pairs from a given data set (with a fixed threshold), we obtain a 

predicted solution based solely on the distances between object pairs. To build a desired solution for this classifier, 

the first step of our methodology consists in obtaining biological dissimilarities for all pairs of genes from the data 

set in hand, devising a biological dissimilarity matrix (B).  

Considering the GO, several proximity measures can be employed to quantify the degree of concordance 

between the sets of terms that annotate any two genes. By combining dissimilarities that operate between sets of 

terms, it is possible to measure the degree of concordance between any two genes. Note that the methodology 

presented here is the same regardless of the biological similarity employed between genes. Therefore, we elaborate 

on the choice of the biological measure during the discussion of the Experimental Setup. Once a biological 

dissimilarity matrix is available, it can be interpreted as external information and fill the gap left by the lack of class 

labels. For a given biological dissimilarity matrix (B) with values in the [0, 1] interval, we proceed and build a 

desired biological solution, where 2 is a threshold in the [0, 1] interval. By applying to all pairs of objects from a 

given data set (with a fixed threshold), we obtain a desired biological solution, based on external information 

extracted from the GO 

 

5. Minimum Spanning Tree (MST) based clustering 

The construction of sub tree or cluster begins with core edge in the MST T (V, E), then the vertices of the 

sub tree will be removed from the data set (MST), so each cluster is constructed in the highest density region in the 

existing data set. In other words, a series of clusters are automatically generated from high density region to low 

density region. The clustering process will stop growing, if the distance of the new edge greater than the average 

edge weight of the MST T (V, E). This condition is used to guarantee the approximate evenly distribution of the 

vertices in each of the clusters or sub tree. 

Algorithm: 

Input: proximity measure values 

Output: n Clusters  

Let n be the number of clusters 

Let Cn be the sub tree or cluster 

1. Construct an MST T(V, E) from proximity measure values 
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2. Compute the average edge weight (Ŵ) of the edges from MST T(V, E) 

3. Find center C of the MST T (V, E) using eccentricity of points 

4. n = 1, Cn = , Visited[V] = 0 

5. Repeat 

6. (a, b) = min (E) // finding core edge 

7. While(distance (a ,b)<Ŵ) do 

8. Cn = Cn { (a, b)} // new cluster formation begins 

9. Visited[a] = n; Visited[b] = n 

10. For each vertex Vi in Cn do 

11. For each vertex Vj linked with Vi do 

12. If distance (Vi , Vj ) < Ŵ and Visited[Vj] = 0 then 

13. Cn = Cn  { (Vi , Vj ) }; Visited[Vj] = n 

// cluster or sub tree Cn growing 

14. Remove all the clustered vertices and edges from T 

15. n = n+1 

16. Until all the vertices are visited in T (V, E) 

17. Return n number of clusters 

The proposed algorithm constructs MST T (V, E) from set of point S (line 1). Average edge weight of the 

edges in MST is computed (line 2). For the given MST T(V, E) Average edge weight (Ŵ) computed. Using the 

eccentricity of points, the central vertex is computed at line 3. Initially all the vertices in the MST are marked as 

unvisited, which are represented as Visited [V] = 0 at line 4. Next the core edge is identified (line 6) to form a new 

sub tree (line 8). Here the core edge is considered as a new initial cluster or sub tree. From this initial sub tree or 

cluster, cluster growth begins at line 8. The vertices linked with the core edge are marked as Visited vertex (line 9). 

For each vertex in the sub tree, add all the linked edges and vertices into the sub tree which satisfy the threshold 

value of average edge weight (line 13). The vertices or nodes which are included in the sub tree are marked as 

Visited vertex (line 13) and also removed from the MST (line 14). If the threshold condition is not satisfied then 

current cluster growth comes to an end, then the cluster number is incremented by 1 (line 15) and new sub tree or 

cluster will be created. The lines 6 through 15 in the algorithm are repeated until the entire vertex in the MST is 

marked as visited or the entire vertex in the MST are removed. 

6. Performance evaluation  

We are analyzing our proposed system approach with the existing system interms of performance 

effectiveness at different noise level. Measures are evaluated regarding their robustness to noise, considering data 

with different noise levels. 

IBSA is the metric used to evaluate distances for the clustering of genes. ISA can only be computed for 

data sets with a standard partition, i.e., class labels. As class labels are usually unavailable for gene clustering (e.g., 

time-series data), the information provided by the Gene Ontology (GO) to overcome the absence of labeled data. 

Predicted solution 

Desired solution 
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4. Experimental Setup  
Accuracy 

Accuracy can be calculated from formula given as follows 

Accuracy =  

 TP (True positive) 

In a statistical hypothesis test, there are two types of incorrect conclusions that can be drawn. The hypothesis 

can be inappropriately. A positive test result that accurately reflects the tested-for activity of an analyzed. If the 

outcome from a prediction is p and the actual value is also p, then it is called a true positive (TP);  

True positive rate (TPR) =TP/P 

P= (TP+FN) 

Where P is the positive. TP is the True Positive 

 TN (True negative) 

A result that appears negative when it should not. A true negative (TN) has occurred when both the prediction 

outcome and the actual value are n is the number of input data. 

True negative rate (TNR) =TN/N 

N= (TN+FN) 

Where 

N is the Negative value. 

TN is the True Negative.  

 FP (False positive) 

A result that indicates that a given condition is present when it is not. However if the actual value is n then it is 

said to be a false positive (FP). 

False positive rate (α) = FP / (FP + TN) 

 FN (False negative)  

False negative (FN) is when the prediction outcome is n while the actual value is p. 
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False negative rate (β) =FN / (TP + FN) 

 

Fig.1. Accuracy rate comparison 

This graph shows the accuracy rate of existing system such as Clustering technique for Gene Expression 

Microarray Data and proposed Minimum Spanning Tree (MST) based clustering algorithm based on two parameters 

of accuracy and methods such as existing and proposed system. In this graph, x axis will be the methods (existing 

and proposed system) and y axis will be accuracy in %. From the graph we can see that, accuracy of the system is 

reduced somewhat in existing system than the proposed system. From this graph we can say that the accuracy of 

proposed system is increased which will be the best one. 

Error rate 

Error rate can be calculated from formula given as follows 

Error rate =  

 

Fig.2. Error rate comparison 
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This graph shows the error rate of existing system such as Clustering technique for Gene Expression 

Microarray Data and proposed Minimum Spanning Tree (MST) based clustering algorithm based on two parameters 

of error rate and methods such as existing and proposed system. In this graph, x axis will be the methods (existing 

and proposed system) and y axis will be error rate. From the graph we can see that, error rate of the system is 

increased somewhat in existing system than the proposed system. From this graph we can say that the error rate of 

proposed system is reduced which will be the best one. 

 EXISTING SYSTEM 

Here conducted a review and comparison of 16 proximity measures for the clustering of gene expression 

data. Here considered six correlation coefficients, four “classical” distances, and six proximity measures specifically 

proposed for the clustering of gene time-course data. Given their differences, we evaluated proximity measures 

separately for cancer and time-course experiments.  

Apart from the comparison of proximity measures, here introduced a set of 17 time-course benchmark data 

along with a new methodology (IBSA) to evaluate distances for the clustering of genes. Both data sets and 

methodology can be used in future research to evaluate the effectiveness of new proximity measures in this 

particular scenario. IBSA can be employed to evaluate proximity measures regarding any gene clustering 

application, i.e., it is not restricted to gene time-course data, the scenario addressed here.  

Here evaluate proximity measures independently of biases of clustering algorithms, because both ISA and 

IBSA allow the evaluation of proximity measures without any clustering algorithm. The main contributions can be 

summarized as follows: here compare proximity measures for the clustering of gene time-course data and cancer 

samples separately, as both scenarios have distinct characteristics.  

Here evaluate a total of 16 proximity measures. For cancer data 10 measures are taken into account. For 

time-course data, all 16 measures are evaluated. For cancer samples, proximity measures are evaluated with respect 

to their ISA, as class labels are available. Here introduce a new methodology to evaluate proximity measures for the 

clustering of genes, called IBSA. IBSA employs external information extracted from the GO to overcome the lack of 

class labels in these data sets. Measures are evaluated regarding their robustness to noise, considering data with 

different noise levels. 

 PROPOSED SYSTEM  

The proposed work, multidimensional gene expression data is represented using Minimum Spanning Tree 

(MST). A key property of this representation is that each cluster of the expression data corresponds to one sub tree 

of the Minimum Spanning Tree, which converts a multidimensional clustering problem to a tree partitioning 

problem. Each node represents one gene, and every edge is associated with a certain level of pheromone intensity, 

densities and the co-expression level between two genes. Minimum Spanning Tree based clustering algorithm aims 

to speed up the clustering process by using the alignment free similarity measures and is able to produce clustering 

result. We have applied Minimum Spanning Tree (MST) based clustering algorithm with proximity measure 

similarity methods. 

Core Edge: Given an MST T (V, E), core edge CE (E) is defined as the edge which is having minimum length. 

CE (E) = min (E) 

Average Edge Weight: Given an MST T (V, E), average edge weight Ŵ is defined as the ratio between sum of the 

weight of the edges and total number of edges. 
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=  |ei| / n 

Based on the above definitions, the process of construction of sub trees (clusters) from the given data set represented 

in the form of an MST T (V, E) is described as follows: 

1. Search for core edge CE1 (E) from the MST. It will be the base for first sub tree or cluster denoted by C1. For 

each vertex Vi in the sub tree, add the edges and the associated vertices Vj from the MST T(V, E) in to the sub tree, if 

the distance (Vi , Vj ) is less than the average edge weight. 

2. Do step 2 until no edges can be added into the sub tree. 

3. Search for next core edge CE2 and then construct another sub tree C2. In this way series of sub trees (clusters) are 

generated as C1, C2, C3…Cn. 

4. If any of the vertices not added to any of the clusters C1, C2, C3 …..Cn are considered as outliers, which can be 

determined based on distance from center of the MST T. 

The construction of sub tree or cluster begins with core edge in the MST T (V, E), then the vertices of the 

sub tree will be removed from the data set (MST), so each cluster is constructed in the highest density region in the 

existing data set. In other words, a series of clusters are automatically generated from high density region to low 

density region. The clustering process will stop growing, if the distance of the new edge greater than the average 

edge weight of the MST T (V, E). This condition is used to guarantee the approximate evenly distribution of the 

vertices in each of the clusters or sub tree. 

6. Conclusion 

In the existing work, investigate the choice of proximity measures for the clustering of microarray data by 

evaluating the performance of 16 proximity measures from time course and cancer datasets experiments. In order to 

improve the accuracy of clustering of gene expression data, we are proposing the novel clustering method. Our 

Minimum spanning tree based clustering algorithm does not require domain knowledge of the given problem. Our 

algorithm finds series of clusters C1, C2, C3…Cn. These clusters ensure guaranteed intra-cluster similarity. This 

algorithm does not require the users to select and try various parameters combinations in order to getthe desired 

output. The key feature of Minimum spanning tree based clustering algorithm is it fuses the advantages of both 

density and graph based clustering approaches. 

 

7. Acknowledgement 

As a future work we can use the weighted semantic features and cluster similarity is introduced to cluster 

meaningful topics from document set. The algorithm finds clusters and outliers with less computational time. The 

proposed algorithm gives better results than the existing methods. The running time of the algorithm is also less 

compared with the existing algorithm. The experiment results shows that the proposed system is well effective than 

the existing system in evaluating the effectiveness of the clustering of gene expression data. 
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